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ABSTRACT 

Cons t ruc t ive  groups  were in t roduced  by Sternfeld in [6] as a class of  

met r izable  groups  G for which a su i tab le  version of the  S tone -Weie r s t r a s s  

t h e o r e m  on the  group of G-valued  func t ions  C(X, G) r ema ins  valid. As a 

way of explor ing the  exis tence of such  S tone -Weie r s t r a s s - type  t heo rems  

in th is  context  we address  the  ques t ion  raised in [6] as to which groups  are 

cons t ruc t ive  and  prove t h a t  a locally compac t  group wi th  more  t h a n  two 

e lements  is cons t ruc t ive  if and  only if it is e i ther  to ta l ly  d isconnected  or 

h o m e o m o r p h i c  to some  vector  group ~ n .  It m a y  therefore  be concluded 

t h a t  the  S tone -Weie r s t r a s s  t h e o r e m  can be ex tended  to some  noncom-  

m u t a t i v e  Lie g roups  - -  exact ly  to those  not  conta in ing  any  nontr ivia l  

compac t  subgroup .  

1. I n t r o d u c t i o n  

The Stone-Weierstrass theorem is a classical theorem present in many of the 

applications of Fhnctional Analysis. It gives natural sufficient conditions for a 

set of real-valued continuous functions B on a compact space X to be uniformly 

dense in the set of all real-valued continuous functions C(X, I~) or, in other words, 

to be sufficiently big to allow approximating an arbitrary function f E C(X, ~) 
with elements of B. 

In his paper [6] Sternfeld dealt with the problem of producing such approxi- 

mation theorems in spaces of group-valued functions. This amounts to finding 
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conditions that  should be imposed on a set of continuous G-valued functions (G 

being a metrizable topological group) B to ensure that  every continuous function 

can be approximated with functions in B. Inspired by the results obtained by 

Sternfeld and Weit [7] for vector-valued functions, Sternfeld introduced the con- 

cept of constructive group as a natural way to formulate Stone-Weierstrass-type 

theorems for group-valued functions. 

Definition 1.1: A metrizable group G is said to be c o n s t r u c t i v e  if, for any 

compact Hausdorff space K,  the following three conditions imposed on a sub- 

group B of C(K, G) are sufficient to imply that  B is uniformly dense: 

(1) B separates points of K,  

(2) B contains the constants and 

(3) B is closed under composition with continuous functions f :  G -4 G. That  

is to say, f o b E B, for every b E B and f E C(G, G) (in still other words, 

f operates on B). 

An additive subgroup of C(K, ~) stable under the map x ~ x 2 is immediately 

a subalgebra of C(K, ~) and therefore the classical Stone-Weierstrass theorem 

shows that  N is a constructive group. It is proved in [6] that  the two-element 

group Z2 and the circle group lI" are examples of nonconstructive groups while the 

integer group Z is a nonclassic constructive group. We prove in Section 2 that  

a necessary and sufficient condition for a locally compact connected group to be 

constructive is to be homeomorphic to a vector group Nn. This is done applying 

basic homotopy theory to simple compact Lie groups and compact connected 

Abelian groups to prove via the structure theory of locally compact groups that  

a constructive connected locally cannot have any nontrivial compact subgroup. 

Section 3 is devoted to totally disconnected groups and we prove that  a metriz- 

able totally disconnected locally compact group with more than two elements is 

always constructive. The techniques applied in this Section are more related to 

set theoretic topology and the key tool is the flexibility to construct continuous 

functions that  appears on zero-dimensional spaces. 

The observation made in Section 4 to the effect that  constructive groups are 

either connected or totally disconnected combined with the results in Sections 

2 and 3 yields the general result mentioned in the Abstract: the class locally 

compact constructive groups is composed exactly by totally disconnected groups 
and groups homeomorphic to Rn. 

All groups in this paper will be assumed to be, unless otherwise stated, metriz- 

able and all topological spaces will be Hausdorff. Our terminology and notation 

are standard. For instance, the symbols • and -1 refer, respectively, to the prod- 
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uct and inverse operations in a group G and the symbol e will stand for the 

identity element of G. For general background and concepts not defined here 

we refer the reader to [4] (for terms related to group theory) and [1] (for terms 

related to algebraic topology). 

2. C o n n e c t e d  g r o u p s  

In studying constructivity for connected locally compact groups we shall first 

focus on one of their main building blocks, compact Lie groups. The following 

lemma will simplify the arguments used to prove that  compact Lie groups are 

not constructive. 

LEMMA 2.1: Let G be a topological group admitting a contractible neighbour- 

hood of the identity and let K be a topological space. If an: K --+ G is a uniformly 

convergent sequence of functions then there is no such that an is homotopic to 

a = lim an, for all n >_ no. 

Proof: Let V be a contractible neighbourhood of e, the identity element of G. 

Then, 

N(V)  = {/3: K -+ G: ~(k) . a(k) -1 E V for all k E K} 

is a neighbourhood of a in the uniform topology and the sequence an is eventually 

contained in N(V).  Since V is contractible all the maps an • a - l :  K -+ V (for 

n _> no) are homotopic to the constant map e. Consequently, an is homotopic to 

a for n _> no. | 

In our next lemma homotopy groups are considered. Recall that  the n-th 

homotopy group 7rn(X) of a topological space is defined by introducing a suit- 

able group operation in the set of equivalence classes of maps of I n --+ X of 

a path connected, locally path connected topological space X.  We also recall 

that  a continuous map ¢: X -~ Y between two such topological spaces defines 

a homomorphism ¢.:  7rn(X) --+ 7rn(Y) via composition (observe that  ¢ o f is 

nullhomotopic, i.e. homotopic to a constant map, whenever f is). It is an easy 

and well-known fact that  we shall need later that  ¢.  is an isomorphism of ~rn(X) 

into 7rn(Y) if ¢ is a covering map (even an isomorphism o n t o  when n > 1). For 

all these elementary basic facts see [1] or any other manual of algebraic topology. 

LEMMA 2.2: Let G be a topological group. Assume that there are two topological 

groups H1 and H2 such that the following conditions hold: 

(i) H1 is locally Euclidean. 

(ii) Some of the homotopy groups 7rn (HI) is nontrivial. 
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(iii) There is a covering map ¢: H1 --+ //2 that factorizes through G, that is, 
there are two continuous mappings ht and h2 such that the diagram 

¢ 
H1 

G 

commutes. 
Under these hypothesis G is not constructive. 

, g 2 .  

S 

Proof." I t  will suffice to find a compact  space K and a subgroup B C_ C(K, G) 
which is not uniformly dense but satisfies properties (1), (2) and (3) of Definition 

1.1. The n-th cube I n (n chosen such that  7r,(H1) is nontrivial) will play the 

r61e of K.  

We define next the subset of C(I n, G), 

B = {a  c C(X ~, a) :  a ~ 0}, 

where a ,,~ 0 means tha t  a is nullhomotopic. Note that ,  since G is not assumed 

to be pa th  connected, the functions in B are not necessarily pairwise homotopic. 

It  is clear tha t  B is a subgroup of C(I n, G) containing the constants that  is 

closed under composition with functions f E C(G, G). We shall next prove that  

B separates the points of G but  is not dense in C(I n, G). 
To show that  B separates points choose two different points in I n, 81 and s2. 

The group H1 is assumed to be locally Euclidean and is locally isomorphic to/-/2; 

the latter will consequently have a neighbourhood V of the identity homeomor- 

phic to ll~ k for some k. I t  is easy to find in this situation a map a: I n --+ V C_/-/2 

such that  a(Sl) and a(s2) are different. Since ¢ is a covering mapping, we have 

that  there is a (unique) lifting ~: I n -~ H1 of a.  The map ~ will be nullhomotopic 

and so will be the map hi o ~. Thus hi o ~ E B and separates sl and s2. 

We finally check that  B is not dense in C(I n, G). Since 7rn(H1) is nontrivial 

we can find a: I n --+ H1 which is not nullhomotopic. The map hi o a will be 

then an element of C(I n, G) tha t  is not in the uniform closure of B. Otherwise, 

h2 o hi o a = ¢ o a would be the uniform limit of a sequence h2 o a m with am E B. 

But all the maps h2oam are nullhomotopic and, by Lemma 2.1, so should be their 

uniform limit ¢ o a.  Since ¢ is a covering map,  the composition homomorphism 

¢,  induced by ¢ is an isomorphism of rrn(H1) into rrn(H2) and thus ¢ o a ~,0 0 

would imply that  a ,-~ 0 and that  goes against our election of a.  | 
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Remark I: It is an immediate consequence of the above lemma that  a construc- 

tive Lie group must be homeomorphic to ~n. In particular it may not contain any 

nontrivial compact subgroup. We shall shortly see that  this is a particular case 

of a more general statement: no constructive locally compact connected group 

can contain a nontrivial compact subgroup and must, via the structure of locally 

compact groups, be homeomorphic to I~ n. 

To extend further the consequences of Lemma 2.2, we need some classical 

structure theorems (or some consequences of them) for locally compact groups. 

The first statement of Lemma 2.3 below is just Iwasawa's theorem [5] and the 

second corresponds to the Borel-Scheerer-Hofmann splitting theorem as found 

in [4, Theorem 9.39]; see also [3]. Lemma 2.4 is a consequence of Theorem 9.19 

of [4]. 

LEMMA 2.3 (Topological structure of locally compact connected groups): The 

following assertions describe the topological structure of iocally compact con- 

nected groups. 

(1) Let G be a a locally compact connected group and K be a maximal compact 

subgroup of G. The group G has then a family R 1 , . . . ,  Rn of subgroups 

topologically isomorphic to I~ such that the multiplication map is a home- 

omorphism of R1 × R2 x . . .  x R~ x K onto G. 

(2) / f  K is a compact connected group, then K is homeomorphic to the direct 

product K' × A where K' is the commutator group of K and A is a compact 

Abelian group Osomorphic to K /K ' ) .  

LEMMA 2.4 (Structure theorem for non-Abelian compact connected groups): 

The commutator G' of a compact connected group G is dosed and there is a 

simple simply connected compact Lie group S such that the quotient map p: S --+ 

S/  Z ( S) factorizes through G', that is there are two continuous homomorphisms 

hi and h2 such that 

with p = h~ o hi. 

s h,> c' % s/z(s) 

Let us agree to say that  a locally compact group is torus free if it contains no 

subgroup topologically isomorphic to ~7, the usual circle group. 

LEMMA 2.5: The maximal compact subgroup of a locally compact connected 

constructive group must be Abelian and torus free. 
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Proof: Let G be a constructive group and K be a maximal compact subgroup. 

We shall first prove that K must be Abelian and then that it may not contain 

any subgroup topologically isomorphic to ~. 

FACT I: The maxima/compact subgroup K must be Abelian. We employ here 

the structure theory of locally compact connected groups as described in Lemmas 

2.3 and 2.4. If K is not Abelian its commutator subgroup K'  will be nontrivial 

and we may choose (using Lemma 2.4) a simple simply connected compact Lie 

group S such that the quotient map p: S --+ S /Z(S )  factorizes through K'.  

Note that the simplicity of S implies that p is a covering homomorphism (the 

center must be discrete, hence finite). By Lemma 2.3, G is homeomorphic to 

•n × K x K / K '  and we can indeed assume that p factorizes through G. Let 

therefore hi and h2 be two continuous functions 

S h,) G ~ S/z(s) 

such that p = h2 CAl. Compact Lie groups always have some nontrivial homotopy 

group and Lemma 2.2 applies to show that G is not constructive. 

FACT II: The maxima/compact subgroup K must be torus free. Assume now 

that K is Abelian and contains a copy of T. Let j denote the topological isomor- 

phism of 11' onto a subgroup of K. Every continuous character of j(T) extends to 

a continuous character of K (this is a standard feature of the duality theory of 

locally compact Abelian groups; see, e.g., [2, Corollary 24.12]). We may therefore 

find a continuous character X: K --+ T such that X o j = Adv. By Lemma 2.3, 

the character X can be extended with continuity to the whole group G (although 

it will no longer be a homomorphism). We have now that the identity mapping 

id: ~£ --+ ~£ factorizes through G 

id ) ~ .  

G 

Lemma 2.2 applies again and the proof is done. | 

Remark 2: Non-Abelian compact connected groups always contain copies of ~; 

the statement of Lemma 2.5 could thus have been summarized by saying that a 

constructive locally compact connected group must be torus free. 

The following structure theorem will be an essential tool for working with torus 

free groups. A proof is available in [4, Theorems 8.20, 8.22 and 8.37]. 
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LEMMA 2.6 (Structure theorem for compact Abelian groups): Let G be a com- 

pact Abelian group. It is always possible to find a compact totally disconnected 

group A, a topological vector space E and a continuous, open and surjectige 

homomorphism ¢: E x A -~ G with totally disconnected kernel. 

Moreover, the equality ker ¢ A (E x {0}) = {0} holds if G is torus free. 

If in addition G is n-dimensional, E and ¢ can be chosen so that E = ]~n and 

¢ is a covering homomorphism. 

The term n-dimensional used above refers to the topological dimension of the 

group. The literature contains an assorted number of (different) definitions of 

topological dimension referring to different concepts which, however, agree in the 

case of compact spaces. The situation for compact Abelian groups may be better 

understood if we recall the fact that the topological dimension of a compact 

Abelian group is exactly the torsion-free rank of its character group. 

To apply Lemma 2.6 it will be necessary to lift certain maps. In those situations 

we shall recourse to the following version of the monodromy lemma. 

LEMMA 2.7 (Theorem 6.1 of [1]): Let X be a connected, locally path connected 

topological space and let ¢: Y -+ Z be a covering map between the topological 

spaces Y and Z. If lh (X)  = {0}, then every continuous map a: X ~ Z admits 

a continuous lift ~ making the following diagram commutative 

X ~ Z .  

Y 

THEOREM 2.8: A connected locally compact group containing a nontrivial 

compact subgroup is not constructive. 

Proof: Let G be a connected locally compact group and let K be a (nontrivial) 

maximal compact subgroup of G. After Lemma 2.5 we may assume that K is 

Abelian and torus free. 

We observe first that K must have an n-dimensional quotient K1 that is not 

path connected. To see this, it suffices to find a finitely generated subgroup of 

(the character group of K) that is not free because every path connected compact 

metric group is a toms (see, e.g., [4, Theorem 8.46]) and character groups of free 

groups are tori (accounts of Pontryagin duality on which these facts are based 

can be found, for instance, in [2, Chapter 6] or [4, Chapter 7]). Suppose no 

such subgroup can be found in K. Groups with this property are called Rl-free 
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(see Definition A1.63 and Proposition A1.64 of [4]) and ~l-free groups have the 

property that  homomorphisms into Z separate the points [4, Proposit ion A1.66]. 

I t  is obvious then tha t  the character group of a torus free group cannot be ~l-free 

and t h a t / ~  must have a finitely generated nonfree subgroup.* 

We proceed now to show that  G is not constructive defining 

B = {a: K --+ G: a(K) is locally path  connected}. 

It  is obvious tha t  B is a subgroup tha t  contains the constants and, since any 

mapping between compact  groups is a quotient map, it is also clear tha t  C(G, G) 
operates on B. 

We now prove that  B separates points but is not dense in C(K, G). 
To check that  B separates points, we apply the structure Lemma 2.6 to K 

and find a continuous, open and surjective homomorphism 0: E × A --~ K such 

that  ke r¢  N (E × {0}) = {0} with E some topological vector space and A some 

compact  totally disconnected group. If x and y are two different elements of 

K we take a continuous real valued function a with a(x) = 0 and a(y) ~ O. 
Denoting by j:  ~ --+ E × {0} a natural  embedding of ~ in E × {0} it is clear tha t  

a:  = ¢ o j o (~ is in B and separates x and y. 

To check that  B is not dense in C(K, G), we shall prove that  the inclusion 

mapping i : / (  -+ G cannot be approximated by functions in B. We apply again 

the structure Lemma 2.6, this t ime to the n-dimensional group K1. This produces 

a totally disconnected compact  group A1 and a covering homomorphism Ol : 

]l~ n X A1 --+ h ' l .  

By Iwasawa's theorem (Lemma 2.3) there is some integer m > 0 such tha t  O 

is homeomorphic to ~m × K .  We fix that  m and trivially extend the covering 

homomorphism (~1 to a covering homomorphism ¢1: R ~+'~ x A1 --> Rm x K1. 

In the same vein we can regard the quotient homomorphism p: K ~ K1 as a 

quotient homomorphism p: ll~ m x K -+ I~ m × K1. Let now V = W x W'  be a basic 

neighbourhood of the identity of G (topologically viewed as ]~m x K) .  Since ¢1 is 

a covering mapping, V can be chosen so tha t  p(V) = p(W x W')  = ¢1 (V0) where 

V0 is a neighbourhood of the identity of ~n+m x A. The identity components of 

p(V) will be thus contractible. 

The recourse to Rl-free groups is unnecessary if we lean on the metrizability of K. 
By an old theorem of Pontryagin R t-freeness is equivalent to freeness for countable 
groups; see also [4, Proposition A1.64]. In order to make clear how our techniques 
apply beyond the metric case, we have chosen this approach independent of the 
metrizability of K; see Remark 3 at the end of the paper. 
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If i were in the uniform closure of B, it would be possible to find ct E B 

such that  a(x) - x E V for every x E K.  As a consequence, p o (a - i) would 

define a continuous mapping of K into p(V). Since K is connected, p o (a - i) 

would actually define a map of K into a connected component of p(V) which, 

by the argument in the previous paragraph, is contractible. We would conclude 

therefore that  we can find a lift a - i of p o (a - i) such that  the diagram 

po(a--i) 
K p(v).  

vo" 

commutes. 

On the other hand, (p o c 0 (K) is a locally path connected metric space and the 

monodromy lemma (Lemma 2.7, applied to the inclusion mapping of (p o c 0 (K) 

into ll{ m x / ( 1 )  implies that  p o a admits a lift 8 making the diagram 

K > R "~ x K 1 .  

 n+m x {e} 

commutative. 

We observe finally that  ¢1 o (~ - ~ 2 ~ )  = p which means that  p(K) should 

be contained in the path component of K1 (note that  ¢1 (~n+m x {e}) is always 

contained in the path component of 11~ "~ x K1), but this is plainly impossible since 

p is a quotient map and h'l is not path connected. 

We conclude thus that  the inclusion mapping is not in the uniform closure 

of B. | 

THEOREM 2.9: A connected locally compact group is constructive if and only if 

it is homeomorphic to ~n, for some n. 

Proof" Theorem 2.8 proves that  a constructive connected locally compact group 

has a trivial maximal compact subgroup, thus Iwasawa's theorem (see Lemma 

2.3) implies that  it must be homeomorphic to Ii~ n . 

To prove the other direction consider a locally compact group homeomorphic 

to ]R n. Again by statement (1) of Lemma 2.3 there will be some subgroups 

RI,... ,Rn of G such that  the multiplication map (Xl , . . .  ,xn) ~ x l "  "xn is a 

homeomorphism onto G. 



350 J. GALINDO AND M. SANCHIS Isr. J. Math. 

Let K be any compact topological space and B a subgroup of C(K, G) that  

satisfies (1), (2) and (3) of Definition 1.1. Now, let Bj denote the subset of 

B whose elements are maps with range contained in Rj. The sets Bj can be 

regarded as subgroups of C(K, Rj) that  contain the constants since B did so. 

If x and y are different points of K there is some c~ E B with a(x)  ¢ a(y) .  

Now choose a continuous map ¢ of G into R i that  separates a(x)  and a(y) (this 

amounts to separating two points of ~n with a real-valued continuous mapping). 

Since C(G, G) operates on B, ¢ o a E Bj and separates x and y. Thus Bj is a 

point-separating subgroup of C(K, Ri). 
Let h: Rj --+ R i be any continuous map and let a C B i. Since G is homeomor- 

phic to R1 x . . .  x Rn we can extend trivially h to a map h of G into R i. Now 

C(G, G) operates on B and (~ also belongs to B; it is thus clear that h o a E Bj, 
but h o a = h o a and we deduce that  C(Ri,Rj) operates on Bj. 

Having proved that  B i is a subgroup of C(K, Rj) with properties (1), (2) and 

(3) of Definition 1.1 we may invoke the classical Stone-Weierstsrass theorem to 

conclude that  each B i is uniformly dense in C(K, Rj). Now choose some f E 

C(K, G). It is now easy (just compose with the inverse of the multiplication map 

and with the corresponding projection) to define for each j a map fj E C(K, Hi), 
1 _< j _< n, such that  f(x) = f l (x) ,  f2(x). . ,  fn(x); each fi will be the uniform 

limit of a sequence of maps belonging to By (and thus also to B) and therefore 

f = f l  " f 2  " '" f n  will be in the uniform closure of B. II 

3. T o t a l l y  d i s c o n n e c t e d  g r o u p s  

Our aim in this section is to show in a dramatic way how the nonconstructive 

group Z2 is an isolated case. This will be indeed the only example among locally 

compact totally disconnected groups. The statement of the following lemma 

points to the basic idea after the proof of that  fact and its proof, reminiscent of 

Proposition 1 of [6], takes care of the necessary technicalities. 

LEMMA 3.1: Let G be a zero-dimensional topological group with IGI > 2 and let 
K be a compact Hausdorffspace. If B is a subgroup of C(K, G) that separates 
the points of K and such that C(G, G) operates on B a n d / t o  is a clopen subset 
of K, then for every e ~ a E G, there is a function F~ E B such that 

Fa(Ko) = {a} and Fa(K\/ to)  = {e}. 

Proof." If Xl and x2 are two different elements of a zero-dimensional topological 

space X and Yl, Y2 are arbitrary elements belonging to another topological space 
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Y, it is always possible to find a continuous function f E C(X, Y) with f(xi) = Yi, 
i = 1, 2. This fact will be used freely throughout this proof with X = Y = G. 

First of all choose b E G, such that  b 7~ a and b 7~ a s. 

The elements of B separate points of K,  and it is easy to find for every x E K0 

and every y ~ Ko a function vx,y E B with v~,y(x) = a and vx,y(y) = b. A simple 

compactness argument produces a covering by clopen sets 

n 

K0 C U AJ,r 
j=l 

and a sequence of continuous functions fj,y: K --+ G with the property 

fj,~(Aj,v) = {a} and fJ,r(Y) = b. 

CLAIM: For every y ~ Ko, it is possible to find Hy E B such that Hy(K) C_ 
{a, a2,ab, b}, Hr(Ko) C_ {a, a2,ab} and Hy(y) = b. 

To prove the claim we shall define recursively a sequence of functions Hj,y with 

the property 

Hj,r(y ) = b  and Hj,y(Am,r) C_ {a, a2,ab} i fm  <_j. 

Once this sequence is defined the function Hn,y will be the desired function H r. 

To start with, consider two continuous functions j l :  G ~ {a, b} and j2: G --+ 

{a, e} satisfying the relations 

j i (a )=j i (a~)=j i (ab)=a,  i = 1 , 2 ,  j l (b)=b,  and j2(bNo)=e 

where No is some clopen neighbourhood of the identity not containing b-la, b-1 ab 
or b-la 2 (so that  {a, ab, a 2} N bNo = 0). 

Next, we take fl,y as Hl,y and define H.~,y = (j2 o f.~,y) • (jl o Hm-l,y).  

Certainly, Hm,y E B since B is a subgroup and functions in C(G, G) operate on B. 

If k E Aj,y with j < m, then Hm,r(k) E {a, ab} because H.~_l,r(k) E {a, a2,ab} 
by recursive hypothesis and jl (a) = jl (ab) = j l  (a 2) = {a} while the only possible 

values for j2(f2,r(k)) are a and e. If k E Am,r, the same conclusion is obtained, 

for j2(fm,r(k)) = a. Finally Hm,y(y) = j2(b) " jl(b) = b. 
Once the claim is proved we use an analogous construction to define the func- 

tion claimed in the conclusion of this lemma. Choose another clopen neighbour- 

hood N1 of the identity in G with N1 C No and such that  a2N1 A {a, b, ab, ha} = O. 
For each y ~ K0 denote by Zy the clopen Zy = Hyl(bN1); it will be possible, by 
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compactness, to find yl, Y2, . . . ,  Ym such that 

m 

K \ Ko C_ U Zyj. 
j = l  

Consider now a function j3 E C(G, G) with j3(a 2) = a and j3(x) = b if x ~ a2N1. 
With these ingredients we define inductively 

F I = H y  1 and F j = j 3 o ( j l  OHy j . j 2oF j_ l ) .  

I fx  e Zy 1 , Fl(X) = b (note that  F1 (x) e bNINHy, (K) = {b}), while Fl(X) = a 

if a C K0. Assume as inductive hypothesis that  Fj-l(X) = b if x e Zy,. with 

r < j - 1 and Fj- l (x)  = a if x E K0; we shall prove that  the same relations hold 

for Fj. 
I fx  E Z~,. and r < j - 1  we know from the inductive hypothesis that  Fj_l(X) = 

b, thus Fj(x) = j3(v.  b), where v is either a or e (the range of j2) and hence 

Fj(x) = b. If x E Zyj, then Fj(x) = ja(e" w) = b because w is in the range of j l  

that  consists only of a and b. And for x e Ko we have Fj(x) = ja(a 2) = a since 

Hyj (a) E {a, a 2, ab} and, by definition, j2 (a) = j2 (ab) = J2 (a 2) = a. 

Having constructed a sequence Fj with Fj(Zy,.) = {b} if r _< j and Fj(Ko) = 

{a}, it is clear that  the function Fm maps /to onto {a} and K \ Ko onto b; 

composing the function F,~ with some j E C(G, G) mapping a onto a and b onto 

e, the lemma follows. | 

THEOREM 3.2: A Iocally compact, totally disconnected metric group G with 
[G[ > 2 is constructive. 

Proof: Let K be a compact Hausdorff space and let B be a subgroup of G 

satisfying properties (3), (1) and (2) of Definition 1.1. We should prove that  B 

is dense in C(K, G). 

A locally compact totally disconnected metric group G admits a neighbourhood 

basis at the identity {N1 _D . . .  D Nk _D .. .} consisting of open subgroups [2, 

Theorem 7.7] and is thus a zero-dimensional topological space (as a matter of 

fact, every totally disconnected locally compact space is zero-dimensional). 

Let / be any function in C(K, G). To see that  f may be uniformly approx- 

imated from within B, it will suffice to check that  for every k, there is some 

fk E B such that,  denoting by 7rk the projections onto G/Nk (discrete espace of 

left cosets), 7rk o fk = 7rk o f ,  for in that  case f will be the uniform limit of the 

sequence {fk }k<~- 
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The function 7rk o f maps the compact space K into the discrete space G/Nk. 
It follows that  there are finitely many clopen subsets K1, .  • •, Kr  in K such that  

K = [.J Ki and 7rk o f takes the constant value a~ on Ki. By Lemma 3.1 we can 

find h~ • B such that  hi(h'i) = a~ and hi(h" \ K~) = e. It is then clear that  

7rk o f = 7rk o (hi - . . .  • hT) and the theorem is proved• | 

4. T h e  genera l  case  

Sections 2 and 3 deal with connected and totally disconnected groups separately. 

We are now in position to put these results together by means of the following 

theorem that,  when applied to (locally) compact groups, will imply that  con- 

structive groups are either homeomorphic to ]~n or totally disconnected• Let Go 

denote the connected component of the identity of the topological group G. 

THEOREM 4.1 : A constructive group is either connected or totally disconnected. 

Proof: Let G be a nonconnected topological group with IG01 > 1. We shall 

prove that  G is not constructive. To this in turn, we consider a discrete space of 

two elements, say K = {1, 2}, and the subset B of C(K, G) defined as 

B = { f  e C(K,G) :  I(K) C_ x/.Go for some x/  E G} 

and we shall show that  B is a proper closed subgroup of C(K,G)(-~ G 2) which 

satisfies properties (3), (1) and (2) of Definition 1.1. 

Notice firstly that  B is a subgroup simply because Go is a normal subgroup 

of G and that ,  since G is not connected, it will contain at least two different 

connected components which implies that  B ~ C(K,G). Thus, B is a proper 

subgroup of C(K, G). 
Furthermore, the connected components form a cover of G and [Go[ > 1, 

whence we have that  B contains the constants and separates the points of K.  

To finish the proof, we only need to show therefore that  (a) B is closed under 

composition with functions f E C(G, G), and (b) B is closed in C(K, G). Actu- 

ally, (a) is an easy consequence of the fact that  continuous images of connected 
O O  sets are also connected. To see (b), let {fn}~=l be a sequence in B converging 

to f e C(K, G). By definition of B, we have fn(2) = f~(1) • yn with y~ E Go 
• O O  for n = 1 ,2 , . . . .  Since {fn(Z)}n=l converges to f(i) for each i = 1,2 and Go is 

closed, the sequence {Yn}~=l converges to a point y e Go. Then f(2)  = f(1)  .y  

and, consequently, f (K)  C_ f ( 1 ) .  Go. Thus, f ~ B. | 
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COROLLARY 4.2: For a locally compact group G with IGI > 2, the following 

assertions are equivalent: 

(1) G is constructive. 

(2) G is either totally disconnected or a Lie group homeomorphic to ~n,  for 

some n. 

Proof." The proof follows from a simple juxtaposition of Theorems 4.1 and 2.8 

for one direction and of Theorem 2.9 for the other. | 

Remark 3: Following the definition of constructive group given by Sternfeld 

[6], we have chosen the class of metrizable groups as a natural setting to state 

Stone-Weierstras-type theorems for group-valued functions. Sternfeld's defini- 

tion nevertheless makes sense for nonmetrizable groups and it seems interesting 

to point out that  our proofs apply with minor changes in this general context, 

that  is, all the results in this paper may be carried out for nonmetrizable groups 

with little additional effort. 
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